A CAPE-OPEN Compliant Object for Large-scale Nonlinear Programming

Yi-dong Lang and Lorenz T. Biegler

Department of Chemical Engineering

Carnegie Mellon University

2nd Annual U.S. CAPE-OPEN Meeting May 25, 2005 Morgantown, WV

Outlines

- Introduction
- What is IPOPT
- Main features of IPOPT
- How to make IPOPT CAPE-OPEN compliant
- IPOPT with CO Tester
- Conclusions

Design, Operations

Control

	MILP	MINLP	Global	LP,QP	NLP	SA/GA
HENS	X	X	X	X	X	X
MENS	X	X	X	X	X	X
Separations	X	X				
Reactors		X	X	X	X	
Equipment Design		X			X	X
Flowsheeting		X			X	
Scheduling	X	X		X		X
Supply Chain	X	X		X		
Real-time optimization				X	X	
Linear MPC				X		
Nonlinear MPC			X		X	
Hybrid	X				X	

What is IPOPT

 $\min f(x, y)$

s.t.
$$g^{L} \le g(x, y) \le g^{U}$$

 $x^{L} \le x \le x^{U}$
 $y^{L} \le y \le y^{U}$

NLP

MINLP

 $\min f(x)$

s.t.
$$g^L \le g(x) \le g^U$$

 $x^L \le x \le x^U$

IPOPT Strategies

min
$$f(x)$$

s.t. $g^{L} \le g(x) \le g^{U}$
 $x^{L} \le x \le x^{U}$

$$\min f(z)$$

s.t.
$$c(z) = 0$$

 $z^{L} \le z \le z^{U}$

min
$$\varphi(z) = f(x) + \mu\{\sum \ln(z^{U} - z) + \sum \ln(z - z^{L})\}$$

s.t. $c(z) = 0$

IPOPT Algorithm – Features

Line Search Strategies for **Globalization**

- L exact penalty merit function
- augmented Lagrangian merit function
- Filter method (adapted and extended from Fletcher and Leyffer)

Hessian Calculation

- BFGS (full/LM and reduced space)
- SR1 (full/LM and reduced space)
- Exact full Hessian (direct)
- Exact reduced Hessian (direct)
- Preconditioned CG

Algorithmic Properties Globally, superlinearly convergent (Wächter and B., 2005)

Easily tailored to different problem structures

Freely Available

CPL License and COIN-OR distribution: http://www.coin-or.org

Beta version recently rewritten in C++

Solved on thousands of test problems and applications

IPOPT Comparison on 954 Test Problems

@ Carnegie Mellon

Comparison of NLP Solvers: Data Reconciliation

Current Activities – IPOPT

- Conversion of IPOPT from FORTRAN to C++
 - Modular easier to maintain and modify
 - Interfaces to modeling packages and linear solvers
 - Parallelism for free
- IBM MINLP Project
 - Combine open source tools (e.g., CBC, IPOPT) to build state-of-art MINLP solvers
- Interfaces to Modeling Environments
 - AMPL widely used
 - ROMeo done
 - AIMMS done
 - CAPE-OPEN done

Information & Its Flow

$$\begin{bmatrix} W_k + \Sigma_k & A_k \\ A_k^T & 0 \end{bmatrix} \begin{bmatrix} \Delta z_k \\ \lambda_k \end{bmatrix} = -\begin{bmatrix} \nabla \varphi(z_k) \\ c(z_k) \end{bmatrix}$$

How to Get Model

CAPE-OPEN Compliant

Position of IPOPT in MINLP

IPOPT & CO Tester

Test with an Example

NLP Formulation

Conclusions

- IPOPT is an efficient and well tested NLP solver
- IPOPT is freely available from www.coin-or.org under a Common Public License (CPL)
- An interface has been developed to make IPOPT CAPE-OPEN compliant.
- As CAPE-OPEN MINLP compliant modeling systems become available, CO community will benefit from using IPOPT for solving large-scale NLP problems.

Acknowledgements

- Dr. Michel Pons in CO-LaN offering the source code of MINLP tester.
- Dr. Antonio Espuna at UPC for helpful discussion.